
MATHEMATICS OF COMPUTATION 
VOLUME 58, NUMBER 197 
JANUARY 1992, PAGES 275-283 

A FAST LAPLACE TRANSFORM 
BASED ON LAGUERRE FUNCTIONS 

JOHN STRAIN 

ABSTRACT. In this paper, we present a fast algorithm which evaluates a dis- 
crete Laplace transform with N points at M arbitrarily distributed points in 
C(N + M) work, where C depends only on the precision required. Our algo- 
rithm breaks even with the direct calculation at N = M = 20, and achieves 
a speedup of 1000 with 10000 points. It is based on a geometric divide and 
conquer strategy, combined with the manipulation of Laguerre expansions via 
a dilation formula for Laguerre functions. 

1. INTRODUCTION 

Many situations in applied mathematics require the use of the Laplace trans- 
form 

(1) af(t)j e-ts f(s) ds 

of a function f defined on R+ - (0, oc). Practically, one often evaluates 
f by applying a numerical quadrature rule to the integral (1). Thus, practical 
situations usually require evaluation of the discrete Laplace transform 

N 

(2) i= fjetisi 
j=l 

for i = 1, ..., M, where the coefficients fj depend on the values f(sj) and 
the weights of the quadrature formula, and t4 and sj are given positive real 
numbers. A special case is the evaluation of polynomials, or more generally the 
discrete Mellin transform. 

A difficulty, however, is the high cost of evaluating (2) when N or M is large; 
direct evaluation of (2) costs O(NM) work. In this paper, we present an algo- 
rithm for evaluating the discrete Laplace transform (2), within a user-specified 
precision e relative to F = Z Ifj I, in O(M + N) arithmetic operations, with 
a constant in O(M + N) depending only on e and the interval in which all the 
points t4 and sj lie. Our algorithm is based on certain properties of Laguerre 
polynomials and takes advantage of the multiplicative convolution structure of 
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the transform. It will speed up calculations in which M and N are large and 
the work is dominated by the arithmetic operations necessary to evaluate the 
sums (2). 

Our algorithm generalizes to evaluate convolutions with a fixed Laguerre 
function. Since any smooth rapidly decaying function on R+ has a rapidly 
converging Laguerre expansion, our algorithm thus generalizes to permit fast 
multiplicative convolution on R+ with any such kernel. 

A fast Laplace transform has also been developed by Rokhlin [2], using 
an approximation-theoretic approach quite different from the special-function- 
theoretic approach presented here. We have not attempted to make a detailed 
comparison of the two algorithms. They are similar in some respects; both use 
a geometric subdivision of R+, but Rokhlin's algorithm is based on Chebyshev 
expansions, while our algorithm uses special functions especially suited to the 
Laplace transform. 

The structure of the paper is as follows. Section 1 presents the special func- 
tion definitions and identities we will need, ?2 explains the algorithm, and ?3 
presents the numerical results. Section 4 discusses convolution with Laguerre 
functions and more general kernels, and ?5 states our conclusions. 

2. FORMULAS AND SPECIAL FUNCTIONS 

The Laguerre polynomials are discussed in [3]. We shall define them by the 
Rodrigues formula 

et 
Ln(t) = !Dn(tne-t) t e R, 

where D = d/dt, though they are most conveniently evaluated by the three- 
term recurrence 

(n + 1)Ln+l(t) - (2n + 1 - t)Ln(t) + nL,-l(t) = 0. 

We will need only one identity involving Laguerre polynomials. This is the 
dilation formula, which expresses the action of the group of dilations of R+ on 
a given Laguerre polynomial. It reads [3, Problem 67, p. 387] 

(3) Ln(ts) = n! tn-k (1 _ t)kL n-k(S). Z= k! (n -) 

From this identity, we can derive the main formula used in our fast Laplace 
transform. We define the Laguerre functions by 

n (t) = Ln(t)e-t. 

This is not the standard definition, but the appropriate one for our situation. 
These Laguerre functions form a biorthonormal set with Laguerre polynomials 
rather than themselves forming an orthonormal set. 

We now require a dilation formula for Laguerre functions. To derive such a 
formula, fix t and assume a Laguerre expansion of the form 

00 

5n (ts) = E (S) s 
k=O 
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Such an expansion exists, since Y(ts) is a smooth function on R+ which 
decreases rapidly at x0. The coefficients are found by using the biorthogonality 
relation [3, Eq. (5.1.1)] 

{00 

j Sk(t)Lm(t) dt = 3km. 

Indeed, multiply the equation defining gk (t) by Lm(s) and integrate term by 
term to get 

gn (t) = j 5n (tS)Lm (s) ds = Yjn(s)Lm(s/t) ds. 

Use the dilation formula for Laguerre polynomials and biorthogonality to get 

gm(t) = j 5(s)Z k!(rn k)! (-)mk (1- 1)kLmkSds 

=0 ifm <n 

1 m! (1Xntllm-n 
= _ - 1- _ ~~~~if m > n. 
t n!(m - n)!< t t 

Thus, we have a dilation formula for Laguerre functions: 

(4) 2n(ts) = Ad(i)f+ (1 - n (n k!) S) 

k= 

(This formula can be found in [1, p. 215]. A quicker proof can be constructed 
by using the generating function of Laguerre polynomials.) An important special 
case (n = 0) is 

t k=O t 

Since Sk(s) < e-52, the series (4) and (5) converge geometrically fast in the 
region 1i - 1/ti <r < 1. 

We are now ready to derive the expansion which forms the basis of our 
algorithm: Put t = xy and s = z in (5) to get 

(6) exYz= Z(0 Yk(Z) 
k=O 

Apply the binomial theorem in the form 

(1 - _)k = 2-k [(1 +-) (1- + (1 +-) (1- 
k 

k 
!1 2-k (+ i( + 

J=0 
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Thus (6) becomes, after reversing the order of summation and shifting the index 
k , 

e-X~~~0 =0 E2(j (j + k)! exyz - iZZ2 j+k)(~I 

(7) X) ((k( 

This series separates the variables x, y, and z in a way convenient for the 
algorithm. 

Finally, we will need to estimate the truncation error incurred by truncating 
(7) after, say, p2 terms. The error is Ep - Fp , where 

IL~ Z~d~ L..d L 
I 

'k' XY [U=p+l k=O k=p+l j=Oj A. 

where z= (I + l/x)(l- 1/y)/2, Z2 = ( + 1/y)(l- 1/x)/2, and 

Fp = - E E Z Z2 flk! Yj+k(Z) 
j=p+l k=p+l 

We have split the error up like this so that the largest error term Ep can be 
bounded by the dilation formula (4) for Laguerre functions: we have 

(8) kp =+ E z2 1 2 k(+22Z)] 

U=p+l k=p+l 

where z1 = 1 - 1/4, and Z2 = 1 - 1/42. The uniform bound j-k(z)l < e-z/2 
and the formula for the tail of a geometric series give the error bound 

IE ?1 ?Lez/2(Z2/(l 

- Zl))P+' +2 

_-__2__Z____l 

- 

Z2))P+_ 
Xy -z2/(l-z1) Xy I-zl/(l-Z2) 

Some algebra reduces this expression to 

IEpI < e-xyz(l+xY+xy) (1 - + 2 + 

+e-xYzl(-x+y+xy) (1 - 1 ) + 

This bound is useful when z lies anywhere in (0, oo) and x and y are re- 
stricted to lie near 1: If we take x and y in a geometric interval (1 /q, q) with 
1 < q < (1 + V'5)/2, an easy calculation shows that 

2- (e q - 1 lq) 

Note that q - I /q is just the length of the interval containing x and y . 
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The other error term Fp cannot be bounded by the dilation formula, because 
the sums both run from p + 1 to oc. We bound it crudely, assuming that q is 
small, by using that (j + k)!/j!k! < 2j+k and that Yj+k(z) < e-z12 < 1. The 
resulting bound tremendously overestimates Fp, but it is sharp enough for our 
purposes. The formula for the partial sum of a geometric series implies that 

1~j (2z1)P+l (2Z2)P+l 
<xy l- 2z, 1-2z22 

If x and y lie in the interval (I/q, q) with 1 < q < V1, then Fp is bounded 
by 

2 (q2 -1)2p+2 IFpI ? 2 (2 -q2)2 

Note that the geometric convergence factor q2 - 1 =q(q - 1/q) is larger than 
the convergence factor q - 1 /q in the error bound for Ep, but that it is raised 
to a higher power 2p + 2 rather than p + 1. It turns out that our bound for 
Fp is comparable to our bound for Ep roughly when q = 1.23 and negligible 
roughly when q = 1.13. Our numerical results use the value q = 1.125, and 
Fp is indeed negligible. 

This completes the formulas and estimates we will need to derive the fast 
Laplace transform. 

3. THE FAST LAPLACE TRANSFORM 

We now explain our algorithm for evaluating the discrete Laplace transform 

N 

(10) fi= E fje-tisi, 
j=1 

within an error bounded by eF = e E I jf I. We use the series (7) in a natural 
way. Since (7) converges rapidly for x and y near 1, we scale t4 and sj into 
groups lying near 1. The scaling factors then comprise z, which is allowed to 
lie anywhere. We begin by dividing the interval (0, oc) in which the "sources" 
s lie into geometric intervals of ratio q > 1. Such an interval B, is given 
by Bn = (q2n-l, q2n+l], for any integer n, and the geometric center of Bn is 
SB = q2nf. Thus, s lies in Bn whenever 1 /q < S/SB < q. The ratio q will be 
chosen later, to balance work and error. Similarly, we cut the interval (0, oc) 
in which the "targets" t1 lie into geometric intervals Cm with geometric centers 
tc and ratio q. (We take the same ratio for simplicity of exposition; clearly, 
one can take different ratios for targets and sources.) Now each source si and 
target t, lies in a geometric interval, say B or C, respectively. Consider targets 
t4 lying in C. We want to evaluate 

N 

.fl = , f~e tsi = E fje-tisi = E E fje-(tiItC)(Sj/SB)tCSB 
j=1 B sjEB B sjEB 

Here we have broken up the sum over j by summing over sources sj in each 
box B separately, and scaled t4 and sj to lie near 1. 
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Consider all sources and targets lying in a fixed pair of boxes B and C, and 
apply (7): 

fi(B) = E fje(titc)(Sj/sB)tcsB 

sjEB 

f SB (l +SBlsj) (1SB tc 
j=O k=OsiEB Si 2 si)t, 

(1 + tc/ti )k ( - j ) (Jk)2' kts +. 

( t tC/tj) (1 _ tC ) + )+k (tCSB ) + 9p . 

Here we choose p and q, depending only on e, so that ?p < eF, where 
F = E Ifjf I. We have now separated the variables t4 and sj in such a way that 
a fast algorithm is possible. It proceeds as follows. 

For each nonempty source interval B, we evaluate (p + 1)2 coefficients 

Ajk(B) = EJfjS (1 + SB/sj )' (1 S 
S)k 

SjEB S1 S 

for 0 < j, k < p . This costs O(p2) work for each nonempty B, which cannot 
add up to more than O(p2N). Note that p depends only on the user-specified 
tolerance e. Now the algorithm proceeds by running over nonempty target 
intervals C. For each C, we accumulate a series of the form 

(11) ZZBjk(C)+ ( +tc/t) (1-tc) 

to be evaluated at all targets t = t4 lying in C. Here, the coefficients Bjk are 
given by 

Bjk(C) = E Ajk(B) j( k! )j+k(tCSB). 

Hence, it costs at most O(p2 IB I Cj) to form all coefficients Bjk for all target 
boxes C, where RBI and JCI are the total numbers of nonempty source and 
target boxes, respectively. 

The final step in the algorithm is to evaluate the appropriate series (11) at 
each t,: this costs O(p2M) work. The complete algorithm thus costs O(N+M) 
work to evaluate the discrete Laplace transform with an error less than eF; the 
constant in O(N + M) depends only on e. The overhead associated with 
forming the coefficients is bounded by the number of source box-target box 
interactions, which depends only on the maximum and minimum source and 
target locations. 

An even further cost reduction is effected by cutting off the interaction: if 
t E C and s E B, then 

e tS < e-tcsB/q2 

If tc = q2n and SB q2m, then 

e- ts < e-q '2(n+m) 
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which decays rapidly as n+m increases. Thus, target box C, need only interact 
with source boxes Bm for which n + m < 1 + (loglog 1/e)/2logq . 

4. NUMERICAL RESULTS 

First, we tested the algorithm on randomly generated points uniformly dis- 
tributed on the interval [0, 5], with weights fi random and uniformly dis- 
tributed on [0, 1]. We took E = 10-6, q = 1.125, and p2 = 62 terms in 
the Laguerre series. The results are reported in Table 1; Tf is the time re- 
quired for the fast evaluation scheme, while Td is the direct evaluation time. 
The fast algorithm beats direct evaluation consistently for N = M > 20. When 
N = M = 10240, the fast algorithm is-about a thousand times faster than direct 
evaluation; thus the projected break-even point is at N = M = 10. The col- 
umn headed Ef reports the errors produced by the fast algorithm, as measured 
against the direct calculation. 

TABLE 1 
Evaluation of a discrete Laplace transform to accuracy 10-6, 
with points randomly generated on [0, 5] 

N=M Tf Td Ef 

20 .01 .01 4.1 x 10-9 

40 .01 .02 4.4 x 10-8 

80 .03 .06 8.5 x 10-8 

160 .04 .24 1.1X 10-7 

320 .06 .96 6.7 x i0-8 

640 .10 3.78 6.5 x 10-8 

1280 .16 15.36 6.6 x 10-8 

2560 .29 61.70 7.7 x 0-8 

5120 .52 248.32 7.4 x 10-8 

10240 .99 1022.98 7.0 x 0-8 

We also tested the algorithm on equispaced points on the interval [0, 10], 
to simulate the application of the algorithm to numerical integration with the 
trapezoidal rule. The weights were randomly distributed on [0, 1], as before. 
The results are shown in Table 2. Again, the fast algorithm breaks even at 
N = M = 20 and achieves a speedup of 1000 at N = M = 10240. The errors 
are also considerably smaller than the error bound. 

Finally, we tested the logarithmic dependence of the work estimate on the 
user-specified precision e . According to our estimates, the work required should 
grow only logarithmically with e. Thus, we doubled the number of significant 
digits required, set e = 10-12, and used p2 = 132 terms in each Laguerre 
series. Here the points were again equispaced on [0, 10]. The results are shown 
in Table 3. Clearly, the time has very precisely doubled in comparison with 
Table 2. 
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TABLE 2 
Evaluation of a discrete Laplace transform to accuracy 10-6, 
with points equispaced on [0, 10] 

N=M Tf Td Ef 

20 .01 .01 7.8 x 10-8 

40 .02 .02 4.9 x 10-8 

80 .03 .06 5.3 x 10-8 

160 .04 .26 6.9 x 10-8 

320 .07 .99 8.2 x 10-8 

640 .11 3.84 6.4 x 10-8 

1280 .18 15.49 2.1 x 10-8 

2560 .30 61.95 8.5 x i0-8 

5120 .55 247.30 3.6 x 10-7 

10240 1.04 993.28 3.6 x 10-7 

TABLE 3 

Evaluation of a discrete Laplace transform to accuracy 10-12, 
with points equispaced on [0, 10] 

N=M Tf Td Ef 

20 .01 .01 4.2 x I0- 4 

40 .04 .02 3.2 x 10-14 

80 .07 .07 5.9 x - 4 

160 .09 .27 3.6 x 10-14 

320 .14 1.06 4.3 x 10-14 

640 .23 3.97 2.9 x10-15 

1280 .35 16.00 1.1 x10-14 

2560 .60 64.00 3.0 x10-14 

5120 1.07 247.81 1.4 x 10-13 

10240 2.00 1037.31 1.3 x10-13 

5. GENERALIZATIONS 

Our algorithm generalizes immediately to evaluate the convolution with a 
fixed Laguerre function, 

N 

fi = fi n (tisj). 
j=1 

(The Laplace transform is the case n = 0.) One simply uses the expansion 
derived in ?2, 

zn(ts) = (D0 1 ) (1 - k) (n + k)!yk(+ 
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in place of (5) in the calculations following (5). The resulting formula, 

2 (XY Z) (1') ZZ2-(j+k) (1 + ?- (1 -I 
(XY) j=O k=O X y 

* +-) (- x)(i)+k+n)!yjk(Z) 
implies a fast algorithm exactly similar to the fast Laplace transform. 

This observation makes an even further generalization possible. One often 
wants to evaluate multiplicative convolution sums of the form 

N 

(12) =E fjK(tisj), 
j=1 

where K is a smooth function on R+ which decays rapidly enough at oo. Such 
a kernel has a rapidly converging Laguerre expansion 

00 

K(z) = Z KnAn (z), 
n=O 

which approximates K arbitrarily well if enough terms are taken. Thus, one 
can truncate the series after say P terms, and apply a fast Laguerre transform 
to each term to get an algorithm which evaluates (12) at M points in O(N+ M) 
work, with a constant depending only on the precision desired. 

6. CONCLUSIONS 

We have presented a fast algorithm which achieves a thousandfold speedup 
over the direct calculation of the discrete Laplace transform when ten thousand 
points are used, but requires so little overhead that it is faster even when 20 
points are used. The constant in the work estimate depends only on the precision 
desired, and only logarithmically at that. Thus, asking for twice as many correct 
digits only costs twice as much. Such an algorithm makes it possible to evaluate 
Laplace transforms numerically to far higher accuracy in far less time. 

A generalization of the algorithm allows the application of any multiplicative 
convolution operator on R+ with a smooth kernel, in optimal time. 
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